Lecture 7, I0/I2/I2

William Holmes

Determinants

Goal

- Define a function that
- Associates a real number with a square matrix
- Tell us if that matrix is invertible.

Square
\longrightarrow Number
$A \xrightarrow{\operatorname{det}} \operatorname{det}(A)$

Goal

Square

$$
A \xrightarrow{\operatorname{det}} \operatorname{det}(A)
$$

- Define this in such a way that

$$
\begin{aligned}
& \operatorname{det}(\mathrm{A})=0 \longleftrightarrow \text { Singular } \\
& \operatorname{det}(\mathrm{A}) \neq 0 \longleftrightarrow \text { Non-Singular }
\end{aligned}
$$

Cases

- We'll define this in cases
- IxI matrices
- 2×2 matrices
- 3×3 matrices
- nxn matrices (rarely feasible by hand)

Case I (IxI matrix)

- A $|x|$ matrix is really just a number.

$$
A=[a]
$$

- Define: $\operatorname{det}(A)=a$
- Then
$\operatorname{det}(A)=0 \longleftrightarrow$ Singular
$\operatorname{det}(A) \neq 0 \longleftrightarrow$ Non-Singular

Case 2 (2×2 matrix)

- Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
- Row reduction leads to

$$
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{11} a_{22}-a_{21} a_{12}
\end{array}\right]
$$

- Define $\operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}$

Case 2 (2×2 matrix)

- With this definition, if $a_{॥} \neq 0$, then:
$\operatorname{det}(A)=0 \longleftrightarrow$ Singular $\operatorname{det}(A) \neq 0 \longleftrightarrow$ Non-Singular

$$
\begin{array}{r}
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{11} a_{22}-a_{21} a_{12}
\end{array}\right] \\
\quad \operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}
\end{array}
$$

Geometric Definition

- The determinant is the product of the blue diagonal minus the product of the red diagonal

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\operatorname{det}(\mathrm{A})=\mathrm{a}_{11} \mathrm{a}_{22}-\mathrm{a}_{12} \mathrm{a}_{21}
\end{gathered}
$$

Example

$$
\begin{array}{cc}
A=\left[\begin{array}{cc}
1 & -4 \\
6 & 3
\end{array}\right] & \operatorname{det}(A)=1 \cdot 3-(-4) \cdot 6=27 \\
\text { Non-Singular } \\
A=\left[\begin{array}{cc}
2 & 7 \\
4 & 14
\end{array}\right] & \operatorname{det}(A)=2 \cdot 14-7 \cdot 4=0 \\
\text { Singular }
\end{array}
$$

Case 3 (3×3 matrix)

- Geometric definition (not in book)
- Blue diagonals minus red diagonals

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Case 3 (3×3 matrix)

- Geometric definition (not in book)
- Blue diagonals minus red diagonals

$$
\begin{aligned}
\operatorname{det}(A)= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{31} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

Example

$$
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 0
\end{array}\right]\right)=240
$$

- So ' A ' is non-singular (ie. it has an inverse).

Example

$$
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 5 & 6 \\
0 & 0 & 0
\end{array}\right]\right)
$$

- We know ' A ' is not invertible.
- How? If it were invertible then $A \vec{x}=\vec{b}$ would have a solution.
- But it doesn't since this is underconstrained.

Example

$$
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 5 & 6 \\
0 & 0 & 0
\end{array}\right]\right)=0
$$

- Alternatively, you can just take the determinant and see that ' A ' is singular (ie. it has no inverse).

Similarly

$$
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right]\right)=0
$$

- ' A ' is singular (ie. it has no inverse).
- This makes sense since this is representative of an under-constrained coefficient matrix.

IMPORTANT

- This method of looking at diagonals DOES NOTWORK beyond the 3×3 case.
- For 4×4 and up, you have to use expansion by minors also referred to as cofactor expansion.

